首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41011篇
  免费   4287篇
  国内免费   2372篇
电工技术   833篇
综合类   4220篇
化学工业   7545篇
金属工艺   5356篇
机械仪表   1962篇
建筑科学   9521篇
矿业工程   1918篇
能源动力   566篇
轻工业   2376篇
水利工程   1515篇
石油天然气   1311篇
武器工业   334篇
无线电   876篇
一般工业技术   5636篇
冶金工业   2859篇
原子能技术   179篇
自动化技术   663篇
  2024年   104篇
  2023年   576篇
  2022年   1107篇
  2021年   1426篇
  2020年   1377篇
  2019年   1207篇
  2018年   1252篇
  2017年   1670篇
  2016年   1675篇
  2015年   1656篇
  2014年   2430篇
  2013年   2795篇
  2012年   2969篇
  2011年   3034篇
  2010年   2284篇
  2009年   2330篇
  2008年   2114篇
  2007年   2565篇
  2006年   2384篇
  2005年   2018篇
  2004年   1739篇
  2003年   1469篇
  2002年   1287篇
  2001年   1068篇
  2000年   890篇
  1999年   804篇
  1998年   643篇
  1997年   530篇
  1996年   449篇
  1995年   387篇
  1994年   321篇
  1993年   268篇
  1992年   193篇
  1991年   135篇
  1990年   138篇
  1989年   116篇
  1988年   55篇
  1987年   54篇
  1986年   14篇
  1985年   25篇
  1984年   17篇
  1983年   17篇
  1982年   21篇
  1981年   6篇
  1980年   17篇
  1979年   16篇
  1964年   4篇
  1963年   2篇
  1961年   2篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
31.
《Ceramics International》2021,47(22):31413-31422
Based on reactive air brazing (RAB), we designed a new type of sealant (Ag–xCuAlO2) for joining 3 mol.% yttria-stabilized zirconia (YSZ) ceramics and AISI 310S stainless steel. The CuAlO2 content affected the wettability of the sealant on the YSZ surface, and the joints had a high shear strength when Ag–2 wt.%CuAlO2, which had a small contact angle on the YSZ substrate, was used as the sealant. In addition, the thickness of the oxide layer was reduced compared to that for the Ag–CuO sealant. The effects of the processing parameters on the microstructure and shear strength of the joints were investigated, and the as-brazed joints reached their highest shear strength (93.7 MPa) when brazed at 1040 °C for 30 min. After high-temperature oxidation at 800 °C for 200 h, the shear strength of the joints remained at 50 MPa, and no apparent change in the microstructure was observed, proving that the joints possessed excellent oxidation resistance.  相似文献   
32.
The present work demonstrates a pressure-less and reliable joining technique for alumina ceramics through a reaction-bonded aluminum oxide (RBAO) method. Effective joining relies on the RBAO mechanism, in which Al particles are converted to alumina through oxidation and bond with alumina particles from the parts to be joined upon sintering. Alumina ceramics in a green state were successfully joined with the use of an Al/Al2O3 powder mixture as an interlayer. The oxidation behavior of the Al particles was confirmed by thermogravimetry and X-ray diffraction analyses. Joining was performed in ambient air at 1650 °C for 2 h without applying any external pressure. Microstructural observations at the joining interfaces indicated a compact joining. The joining strengths were assessed by determining the biaxial strengths at room temperature, and the joined samples exhibited no fractures at the joining interfaces. Moreover, the joints had a strength of almost 100 % when compared with those of the parent alumina ceramics.  相似文献   
33.
There is growing awareness that indoor exposure to particulate matter with diameter ≤ 2.5 μm (PM2.5) is associated with an increased risk of adverse health effects. Cooking is a key indoor source of PM2.5 and an activity conducted daily in most homes. Population scale models can predict occupant exposures to PM2.5, but these predictions are sensitive to the emission rates used. Reported emission rates are highly variable and are typically for the cooking of single ingredients and not full meals. Accordingly, there is a need to assess PM2.5 emissions from the cooking of complete meals. Mean PM2.5 emission rates and source strengths were measured for four complete meals. Temporal PM2.5 concentrations and particle size distributions were recorded using an optical particle counter (OPC), and gravimetric sampling was used to determine calibration factors. Mean emission rates and source strengths varied between 0.54—3.7 mg/min and 15—68 mg, respectively, with 95% confidence. Using a cooker hood (apparent capture efficiency > 90%) and frying in non‐stick pans were found to significantly reduce emissions. OPC calibration factors varied between 1.5 and 5.0 showing that a single value cannot be used for all meals and that gravimetric sampling is necessary when measuring PM2.5 concentrations in kitchens.  相似文献   
34.
The unified effective stress theory based on suction stress (SSCC theory) enables the characterization of soils under both saturated and unsaturated conditions with one closed-form relationship. This study provides experimental verification of this theory through the unconfined compressive strength test (UCS) and indirect tensile test strength (ITS) on silty clay soil stabilized with fiber. A series of matric suction, ITS, and UCS tests were conducted to validate the SSCC theory through the representation of the results of ITS and UCS tests in terms of mean total stress (p) versus deviatoric stress (q) and mean effective stress (p`) versus deviatoric stress (q). The results of the validation procedures showed that the SSCC theory is applicable and valid at a range of 6%–16% of water content on the silty clay and the silty clay fiber-reinforced soils. There is a small fluctuation in the increase of ITS and UCS values with increasing fiber content due to randomly oriented distribution of the fiber. The addition of glass fiber does not significantly affect the capacity of water retention of the soil. It improves the condition of the mechanical soil properties at the end of construction more than of the effective stress condition.  相似文献   
35.
Graphite–SiC micro-composites have been prepared in–house by carbothermal reduction process. Controlling the process parameters including the weight ratio of SiO2 to graphite as well as carbothermal reduction temperature during the micro-composite preparation favors the homogeneous formation of SiC with preferred morphologies like ribbons and whiskers/fibers. The micro-composite modified low carbon MgO-C refractories have exhibited significantly improved bulk properties over the standard composition. To understand the beneficial role of SiC reinforcement on hot strength performance under air oxidizing conditions, we propose a scaling parameter known as strength factor (fs) based on the ratio of hot strength (HMOR) to cold strength (CCS). Correlating the strength factor data (fs) with oxidative damage provides new insights into the reinforcing effects of distinct SiC morphologies in this new class of micro-composite fortified refractory systems over the standard compositions.  相似文献   
36.
《Ceramics International》2021,47(22):31268-31276
The relationship between the tensile strength of corroded domestic second-generation (2ed-gen) SiC fibers at various temperatures for 500 h in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt and the typical microstructure was studied. Weibull theory was used to analyze the critical defects that caused the tensile fracture, and the microstructure of fibers before and after corrosion was characterized. It is concluded that the decrease of tensile strength after corrosion at 800 °C is caused by the surface injury of fibers, which led to the shift of critical defects from the internal defects of virgin fibers to surface defects. Moreover, corrosion at higher temperature accelerates the corrosion process and dissolve the surface O-contained layer thoroughly. This shifts the critical defects back to the internal defects and will be helpful for the recovery of tensile strength of corroded fibers at the higher temperature.  相似文献   
37.
The design of an interfacial structure is particularly important for load transfer in composites. In this paper, different amounts of carbon nanotubes (CNTs) were grafted onto the carbon fiber (CF) surface by adjusting grown temperature using injection chemical vapor deposition (ICVD). The prepared CF preform grafted with CNTs (CNTs-CF) were used to reinforce magnesium alloy by squeeze casting process. The microstructures were analyzed by means of optical microscope (OM) and scanning electron microscope (SEM), and the interlaminar shear strength (ILSS) and tensile strength of the composites were determined by double-notch shear test and tensile test. The results indicated that moderate ILSS was more conducive to improving the tensile properties of carbon fiber reinforced magnesium matrix (Cf/Mg) composites. Compared with Cf/Mg, the tensile strength of composite with CNTs increased by about 80%. For Cf/Mg composites grafted with CNTs, CNTs had the effects of delaying crack propagation and increasing energy consumption by the pull-out and bridging mechanism, which were the main reasons for improving the strength. The analysis of shear fracture surface showed that the crack propagation path can be optimized by adjusting the amounts of grafted CNTs. The presence of CNTs affects the stress distribution and consequently the crack initiation as well as the crack propagation.  相似文献   
38.
In this study, SiC whiskers (SCWS) reinforced geopolymer composites (SCWS/KGP) and their ceramic products (SCWS/leucite) were prepared, and effects of SiC whiskers contents on the microstructure and flexural strength of the SCWS/KGP and SCWS/leucite composites were investigated. The results show that the whisker addition has little influence on both phase composition and thermal shrinkage of the KGP composites, but a suitable content of whisker will result in the improved flexural strength, and when the SCWS content is 2 wt%, flexural strength of the SCWS/KGP composite is enhanced by 95% compared with the neat geopolymer. The flexural strength of the composites can be further enhanced significantly after the composites being treated at 1100 °C and 1200 °C and flexural strength of the composite with SCWS content of 2 wt% was 107% and 125% higher than the untreated counterpart, respectively. The increase in flexural strength of the composites should be attributed to the strong leucite formation, whisker debonding and pulling out from matrix during the fracturing process based on the good interfacial bonding state between whisker and leucite matrix.  相似文献   
39.
木片筛余物高得率半化学法清洁制浆技术研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以太阳纸业备料车间木片筛选碎料(筛余物)为原料,对其烧碱法半化学制浆的实验室工艺和生产试验进行了研究。结果表明,筛余物采用半化学法制浆可获得较高得率和环压强度的纸浆,且用碱量对纸浆性能有显著影响。相对8%NaOH (相对于绝干原料)化学预处理,采用14%NaOH化学预处理结合两段浆浓22%的高浓磨浆工艺,所制半化学浆抄造浆张的裂断长和环压指数分别达2.89 km和9.76 N·m/g,是前者的1.9倍和1.2倍,而且优于现用国内OCC废纸浆抄造浆张;生产试验得到的浆张性能指标与实验室相吻合,其中紧度和环压强度分别达到GB/T 13023—2008瓦楞芯(原)纸AA级和A级优等品要求。  相似文献   
40.
Type 316LN stainless steel (SS) is the principal structural material for the components of sodium cooled fast reactors operating under elevated temperature conditions. In order to assess the degradation in strength of service exposed components using a small specimen testing technique such as automated ball indentation (ABI), it is necessary to carry out prior detailed ABI studies on the virgin material. In this investigation, the tensile behaviour of as-received 316LN SS were investigated at several temperatures in the range 298–973 K using ABI technique. The load-depth of indentation data measured from ABI tests was analyzed using semi-empirical relationships to obtain the tensile properties. The yield stress and the flow curves were determined by correlating ABI results with corresponding uniaxial tensile test results. Trend curve for tensile strength with temperature, as estimated from ABI tests, exhibited a plateau region in the temperature around 823 K, similar to uniaxial tensile tests. The variations of strength coefficient, strain hardening exponent, yield ratio, hardness and uniform ductility with temperature were evaluated from ABI tests. The ABI technique was found to estimate the influence of temperature on tensile properties sensitively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号